Cubic 4-folds

on the relationship between cubic fourfolds and K3 surfaces

 (20–1000)
d () () () κdegree (twisted) K3
8(2,2)
12
1414
18(2,3)
20
24(6,2)
2626
30
32(2,4)
36
3838
4242
44
48
50 (2,5)
54 (6,3)
56 (14,2)
60
62 62
66
68
72 (2,6)
74 74
78 78
80
84
86086
90
92
96 (6,4)
98098, (2,7)
1020
1040(26,2)
108
1100
11419114
11619
120
1220122
12619(14,3)
1280(2,8)
132
13419134
1380
14019
14419
14619146
1500(6,5)
1520(38,2)
15619
15819158
16219(2,9)
16419
16819(42,2)
17019
17419
17619
180
18219182
18619186
18819
1920
19419194
19819
20019(2,10)
20419
20619206
21019
21219
21619(6,6)
21819218
22219222
22419(14,4)
22819
23019
23419(26,3)
23619
24019
24219(2,11)
24619
24819(62,2)
25219
25419254
25819258
26019
26419
26619266
27019
27219
27619
27819278
28219
28419
28819(2,12)
29019
29419294, (6,7)
29619(74,2)
30019
30219302
30619
30819
31219(78,2)
31419314
31819
32019
32419
32619326
33019
33219
33619
33819338, (2,13)
34219(38,3)
34419(86,2)
34819
35019(14,5)
35419
35619
36019
36219362
36619366
36819
37219
37419
37819(42,3)
38019
38419(6,8)
38619386
39019
39219(98,2), (2,14)
39619
39819398
40219402
40419
40819
41019
41419
41619(26,4)
42019
42219422
42619
42819
43219
43419434
43819438
44019
44419
44619446
45019(2,15)
45219
45619(114,2)
45819458
46219
46419
46819
47019
47419474
47619
48019
48219482
48619(6,9)
48819(122,2)
49219
49419494
49819
50019
50419(14,6)
50619
51019
51219(2,16)
51619
51819518
52219
52419
52819
53019
53419
53619(134,2)
54019
54219542
54619546
54819
55219
55419554
55819(62,3)
56019
56419
56619566
57019
57219
57619
57819(2,17)
58219582
58419(146,2)
58819
59019
59419
59619
60019(6,10)
60219602
60619
60819(38,4)
61219
61419614
61819618
62019
62419
62619626
63019
63219(158,2)
63619
63819
64219
64419
64819(2,18)
65019(26,5)
65419654
65619
66019
66219662
66619(74,3)
66819
67219(42,4)
67419674
67819
68019
68419
68619686, (14,7)
69019
69219
69619
69819698
70219(78,3)
70419
70819
71019
71419
71619
72019
72219722, (2,19)
72619(6,11)
72819(182,2)
73219
73419734
73819
74019
74419(186,2)
74619746
75019
75219
75619
75819758
76219762
76419
76819
77019
77419(86,3)
77619(194,2)
78019
78219
78619
78819
79219
79419794
79819798
80019(2,20)
80419
80619806
81019
81219
81619
81819818
82219
82419(206,2)
82819
83019
83419834
83619
84019
84219842
84619
84819
85219
85419854
85819
86019
86419(6,12)
86619866
87019
87219(218,2)
87619
87819878
88219(98,3), (2,21)
88419
88819(222,2)
89019
89419
89619(14,8)
90019
90219
90619906
90819
91219
91419914
91819
92019
92419
92619926
93019
93219
93619(26,6)
93819938
94219942
94419
94819
95019(38,5)
95419
95619
96019
96219962
96619
96819(2,22)
97219
97419974
97819978
98019
98419
98619
99019
99219(62,4)
99619
99819998

References

Addington, N. (2016). On two rationality conjectures for cubic fourfolds. Math. Res. Lett., 23(1), 1–13. https://doi.org/10.4310/MRL.2016.v23.n1.a1
Farkas, G., & Verra, A. (2018). The universal K3 surface of genus 14 via cubic fourfolds. J. Math. Pures Appl. (9), 111, 1–20. https://doi.org/10.1016/j.matpur.2017.07.014
Hassett, B. (2000). Special cubic fourfolds. Compositio Math., 120(1), 1–23. https://doi.org/10.1023/A:1001706324425
Huybrechts, D. (2017). The K3 category of a cubic fourfold. Compos. Math., 153(3), 586–620. https://doi.org/10.1112/S0010437X16008137
Huybrechts, D. (2022). The K3 category of a cubic fourfold – an update. http://www.math.uni-bonn.de/people/huybrech/CubicPaperAnUpdate.pdf
Tanimoto, S., & Várilly-Alvarado, A. (2019). Kodaira dimension of moduli of special cubic fourfolds. J. Reine Angew. Math., 752, 265–300. https://doi.org/10.1515/crelle-2016-0053

Explanation

()

Hassett's condition for non-emptiness of Cd

d satisfied d8 and d0,2(mod6)

()

Hassett's condition for an associated K3 surface

d satisfies () and d is not divisible by 4, 9 or any odd prime p2(mod3)

there exists a K3 surface S such that H~(X,Z)H~(S,Z)

there exists a K3 surface S such that S is birational to a moduli space of stable sheaves on S

()

Huybrechts' condition for an associated K3 twisted surface

d satisfies () and in the prime factorisation d/2=pini one has ni0(mod2) for all primes pi2(mod3)

there exists a K3 surface S and a Brauer class αBr(S) such that H~(X,Z)H~(S,α,Z)

()

Addington's condition for an associated K3 surface

d satisfies () and d is of the form 2n2+2n+2a2 for some n,aZ

there exists a K3 surface S such that F(X) is birational to Hilb2S

We have that ()()()

About

This is an overview of (some of) what we know about the relationship between cubic fourfolds and K3 surfaces.

See the GitHub repository for more information. Please make feature requests! What would you like to see here?